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Abstract

The objective of this investigation has been to develop an algo-
rithm (or algorithms) for the improvement of the accuracy and ef-
ficiency of the computer fluid dynamics (CFD) models to study the
fundamental physics of combustion chamber flows, which are neces-
sary ultimately for the design of propulsion systems such as SSME
and STME. During this three year study (May 19, 1989 - Mary 18,
1992), a unique algorithm was developed for all speed flows. This
newly developed algorithm basically consists of two pressure-based
algorithms (i.e. PISOC and MFICE). This PISOC is a non-iterative
scheme and the FICE is an iterative scheme where PISOC has the
characteristic advantages on low and high speed flows and the modi-
fied FICE has shown its efficiency and accuracy to compute the flows
in the transonic region. A new algorithm is born from a combination
of these two algorithms.

This newly developed algorithm has general application in both
time-accurate and steady state flows, and also was tested extensively
for various flow conditions, such as turbulent flows, chemically react-
ing flows, and muitiphase flows. A list of publications and doctoral
dissertations resulting from this effort is provided in Appendix 1.

1 CURRENT NUMERICAL METHODS
FOR COMPRESSIBLE AND INCOM-
PRESSIBLE FLOWS

The objective of this study is to improve the accuracy and efficiency of
numerical simulation of combustion chamber flows for better understand-
ing of the physics of these complicated flow conditions. To achieve this
objective, a three year study has been initiated to develop an algorithm
(or algorithms) for incorporation of complex physical phenomena such as
turbulence, compressibility, chemistry and multiphase effects into exist-
ing CFD codes. This report summarizes the achievements of developing
a unique algorithm during the last three years. Two pressure-based algo-
rithms have been identified and extensively tested. In the following, we will
describe the methodology and testing results.



The unsteady compressible Navier-Stokes (N-S) equations are a mixed
set of hyperbolic-parabolic partial differential equations (PDE’s) while the
unsteady incompressible N-S equations are a mixed set of elliptic-parabolic
PDE’s. Traditionally, different numerical techniques have been used to
solve the N-S equations in the compressible and incompressible flow regimes.
If the unsteady terms are dropped from the equation set for compressible
flows, the resulting equations become a mixed set of hyperbolic-elliptic
equations which are difficult to solve because of the differences in numeri-
cal techniques required for hyperbolic and elliptic type equations. Conse-
quently, nearly all successful solutions of the compressible N-S equations
have employed the unsteady form of the governing equations. This strategy
will also be adopted in this study for the developed algorithm to obtain a
more general application in both time-accurate transient and steady
state applications. With this approach, the steady state solution is ob-
tained by marching the solution in time until convergence is achieved.

1.1 Density-Based Methods

To date, numerical methods utilizing the primitive variables: density, pres-
sure and velocities (in contrast to stream function-vorticity formulation)
for solving the unsteady N-S equation, can be largely classified into two
schemes: density-velocity scheme and pressure-velocity scheme. Most den-
sity-velocity methods have their origins in external acrodynamics problems.
In these problems, it is natural to choose density as a primary dependent
variable for the continuity equation, whereas the pressure is calculated from
the equation of state.

For most density-based methods the equations governing continuity, mo-
mentum, energy and other scalars are solved in a coupled manner. For
inviscid flow calculations, explicit methods (1] are often used for simplic-
ity and storage considerations. However, the explicit methods suffer from
the limitation of small time steps due to stability requirements, and their
application to viscous flow problems is costly. Thus implicit methods are
employed for most of the compressible viscous flow calculations. The most
widely used implicit schemes for viscous flows are the methods of Beam
and Warming [2], Briley and McDonald (3] and MacCormack [4]. Since the

governing equations are solved in a coupled manner, the characteristics of



the equation system are easily obtained. The fluxes at cell faces can be
calculated by the so called flux-vector splitting techniques or by solving the
Rieman problem. The advantage of this approach is that the jump (dis-
continuity) conditions are satisfied, therefore good results for discontinuous
problems, such as flows with shocks, are expected. One approach, using
the flux-vector splitting techniques, is the Steger and Warming [5] method,
in which the flux vector F(U) is split into two parts, F* and F~ such
that all the eigenvalues of %% are non-negative, and the eigenvaiues %EU%
are non-positive. The spatial derivatives of F'* are backward differenced
and that of F~ are forward differenced. The method involving solutions
of the Rieman problem was originally proposed by Godunov [6]. Since an
exact solution of the Rieman problem is expensive and unnecessary, several
flux-difference split schemes have been developed, for example by Colella
(7], Dukowics (8], and Roe [9], for which the exact solution of the Rieman
problem is replaced by an approximate solution. Since the use of central
differencing for convective terms at high Reynolds numbers resulted in spa-
tial oscillations in the early study, these oscillation are suppressed now by-
adding artificial damping, usually fourth-order damping terms are used by
density-based methods. In the last few years, significant progress has been
made in the high resolution numerical schemes based on the Total Vari--
ation Diminishing (TVD) principle, introduced by Harten [10] to develop
oscillation-free schemes. The TVD schemes are very robust for transient
problems and shocks capturing [11]. Further details of these schemes can
be found in the recent book by Hirsh {12].

Although the density-based coupling schemes have been successfully ap-
plied to compressible flows, the methods have a disadvantage when in the-
limit the incompressible flow is approached, and the linkage between pres-
sure and density weakens in the low Mach number range {13]. In fact, Mach
number gero constitutes a singularity in the compressible form of the equa-
tions. Any tiny disturbances of density are enough to destroy the stability
of solution in the low Mach number regime. Numerical experiments [14]
confirmed the low Mach number inefficiency and instability of the density
based methods. To avoid such a problem, a "pseudo” (artificial) compress~-
ibility term can be added into the continuity equation [15, 16]. This new
parameter, called "pseudo”, should speed its use. As a result, the conver-
gence rate highly depends on the choice of this value. This method is not



efficient for unsteady simulations since many inner iterations are required
to obtain divergence free solutions at each time step. Many existing meth-
ods, developed specifically for incompressible flows, surmount this problem
by treating the pressure as a primary dependent variable. These pressure-
velocity coupling schemes are equally valid for compressible flows.

1.2 Pressure-Based Methods

The earliest development of primitive variable schemes based on pressure-
velocity coupling was the semi-implicit transient Marker-and-Cell method
(MAC) [17) and Simplified MAC (18] by the Los Alamos group. Since there
is no explicit governing equation for the pressure field, these methods ba-
sically derive a working pressure equation through joint manipulation of
the momentum and continuity equations. Existing pressure-velocity cou-
pling methods can be divided into two categories, namely, semi-implicit
and full implicit schemes. Because of their reliance on explicit differenc-
ing, semi-implicit schemes have a disadvantage in time-dependent compu-
tations, since the time-step size, necessary to maintain stability of such
methods may drastically impair the efficiency of the algorithm especially
when applied to the calculation of steady-state flows. Implicit methods on
the other hand, do not suffer from time step restrictions.

The most popular method using pressure-velocity coupling schemes for
solving incompressible flows is the SIMPLE algorithm of Patankar and
Spalding [19] and its variants: SIMPLER by Patankar {20], SIMPLEC by
Van Doormaal and Raithby [21], SIMPLEX by Van Doormaal and Raithby
[22) and SIMPLEST by Sha {23]. The advantages gained by the implicit
differencing of the SIMPLE method, which is based on a pressure correction
procedure, are offset by the use of an iteration, which makes time depen-
dent calculations rather expensive as iteration is required at each time step.
The SIMPLE algorithms can be extended to handle compressible flow cal-
culations as shown by Van Doormaal et al. [24]. This method accounts for
additional variations in density through an equation of state based pressure
-density coupled correction scheme. Although applicable to a wide variety
of flows, there are certain flow situations in which this method is inappro-
priate and fails to yield acceptable resuits. Recognized and addressed by
Gosman and Watkins [25], these flows are the ones in which the tempera-



ture is strongly coupled with the pressure and velocity, such as chemically
reacting flows.

Another method for ha.ndhng the pressure-velocity coupling of implicitly
differenced fluid flow equations is the non-iterative PISO algorithm of Issa
(26]). This method splits the process of the solution into a series of predictor
and corrector steps that, at each step, a simplified set of equations in terms
of a single unknown variable is obtained. The PISO algorithm has exhibited
a very efficient and robust nature when applied to a variety of flows as shown
by Benodekar [27] and Issa [28].

The operator splitting technique can be described briefly as follows: We
first describe the N-S in a fully implicit way such that the N-S equation

0 a Jp a
GilPu) + g lowivs) = g -t 5Tt Si (1)
becomes
1 n n
S{low = (pu} = H(u™) - A + 5 (2)

where A is the discrete 7, u?*?, pi*! denote i** grid point values at (n+1)**
time level. H( ) is a linearized convection diffusion operator. H( ) in
principle is a time-dependent operator in which H(u™*!) represents a fully
implicit formulation while H(u") represents a fully explicit formulation.
The stacting point of the operator-splitting technique in this research is
the one originally proposed by Issa {26}, namely, the Pressure Implicit by
Splitting of Operator (PI1SO) algorithm. In this algorithm, each marching
time step is further divided into a sequence of predictor-corrector steps. In
the first momentum predictor step the operator is split in such a way,

H(u7) = Aou; + Hi(v]) (3)

in which A, is the diagonal part of the original matrix operator H. u;
is the first predictor velocity value (unknown). The implicit momentum
predictor step then can be rewritten as:

Ty,

1 A° n, = __ =\ _¢c._n : pu;
(i~ 55)esi = Hitw) = 0"+ Si+ o (4)




Note that the pressure value used in equation (4) is the "old” value
(time step n). Thus, the solution of (4) will not satisfy continuity at time
stepn + 1.

Corrector steps are devised to derive a pressure governing equation,
driving the velocity field to satisfy continuity. This is done by splitting the
operator for first correcting the velocity field such that

H(u;") = Aow™ + Hi(u]) (5)
thus the discretized momentum equation becomes
1 4\ . .. . . prul
- = ;= HNu; ) — Qi i
(& pn)p u* = Hi(ui) - A + 5+ 2 (6)

Note that equation (6) now has two unknowns: u;” and p”.
By subtracting equation (4) from (6), we obtain a momentum increment
equation

pruT —puy ==\~

5t ;‘:)_ Aip” —p") (7

By taking divergence of this equation and involving continuity con-
straints, a pressure increment equation is obtained

[Aa{(s-l; - —j—:)—lAa} - ?—(%ID-] (" - p") = Ai(p";) (8)

where @() is the equation of state linking pressure and density. This one
-step corrector scheme resembles the SIMPLE algorithm, if iterations be-
tween first predictor and first corrector were executed. To reduce this
iteration procedure, a second corrector, based on further operator-splitting
for second corrector velocity field, is used:

Aop-u

o ne (1 A,

‘
H(u;™) =

13

w;” + Hi(u]") (9)

In this operation, the momentum and continuity then are simultane-
ously satisfied. Summaries of the PISO procedure are listed in Table 1.

Here, we compare the PISO algorithm to another established pressure
based method. The newly developed FICE scheme of Hu and Wu [29] based -
on the earlier ICE scheme {30] is chosen. However, a modification of the

6 GBGINAL Pace s
Gr PO QALITY



FICE scheme in parallel with the operator-splitting idea is developed as
part of the research effort of this task in section 2. This newly developed

algorithm is called MFICE. In the FICE scheme, the discretized momentum
equation is written as
6t
The main difference between this equation and equation (4) is the split
operator H/(). FICE used an explicit scheme for the predictor step while
the PISO used an implicit scheme. Another difference lies in the way the
pressure equation is set up. Instead of deriving a pressure-correction equa-
tion, the FICE scheme directly takes divergence of the momentum equation
(in contrast to the momentum increment equation) and invoking the con-

tinuity equation. This scheme is essentially a one-step predictor-corrector
scheme and requires iteration.

(% . A,,)ui'*‘ = Hi(u?) - Ap™ + i + 2 (10)

1.3 Relationship Between Pressure and Density Based-
Methods

Recently, the PISO algorithm has been rearranged in a vector formulation
for direct comparison with other density based algorithms. The findings
[31] indicate that the PISO algorithm alters the sonic speed so that the
equations stay well conditioned in the limit of low Mach numbers. In par-
ticular, the PISO algorithms is very closely related to the preconditioning
algorithm developed by the Penn State group [32]. The philosophy of the
preconditioning technique is to cause the density-based method to appear-
pressure-based at low speeds but to remain density-based at high speeds..
Originally, preconditioning methods were used as a means of circumventing
the disparity in the eigen values at low Mach numbers. This technique al-
ters the time derivatives of the equation of motion with the acoustic speed-
scaled down to the level of the fluid velocity, such that the local CFL num-
ber (which controls the marching time-steps) is approximately of the same
order for viscous and inviscid terms. The extensions of the predicting tech-
nique have recently been carried out for viscous chemical reacting flows
involving chemical source terms. However, how preconditioning may be
applied to improve convergence and robustness in the calculation of multi-



phase and turbulent flow (involving higher-order turbulent models) remains
to be seen.

2 NEW NUMERICAL FORMULATIONS
FOR ALL-SPEED REGIMES BASED
ON PRESSURE METHODS

2.1 Formulation of PISOC and MFICE

The basic ideas of the operator-splitting technique have been described
in 1.2. The algorithm used was the PISO algorithm first proposed by
Issa [26). The major difference between the PISO and the previously used
pressure-based schemes, such as the SIMPLE-family schemes, is the use
of momentum per unit volume as the resulting variable of the momentum
equations, rather than velocity (which is momentum per unit mass). The
advantages are twofold. First, the time-dependent equations give directly
the change in a property per unit volume, whereas the SIMPLE pressure
correction algorithm must divide the time change by density in order to
calculate the new velocity. Second, the change in momentum can be re-
interpreted as a change in mass flux. This gives a linkage between pressure
and mass flux; the mass conservation equation then only contains density in
the time-dependent term. The pressure correction equations thus obtained
become the momentum correction equation:
-1
~(5-2) 18t -5 (11)

prui” —plu; =
thus the pressure increment equation is obtained by taking divergence of
(11) and involving the continuity equation

[a{ (- ff)"a.-} W2 G = Al (12

where ®(p", T") = p*/¢"

Note that the pressure-momentum linkage equation as described in (12)
remains essentially elliptic at all flow speeds and cannot mimic the hyper-
bolic behavior of the system of equations, when flows are transonic and



supersonic. To remedy this defect, we propose to split the operator, con-
sistent with the compressibility effect of the density correction, such that
the first momentum corrector step becomes:

1 AO - wm ) = o . pn '?
(f-52)rwr = Bw) - A+ S+ I (13)
the operator splitting procedure used is
H(wi") = B'(u) + AL (14)

This new algorithm is named PISOC (Consistent) due to its consistent
operator splitting procedure. Compared to the original PISO algorithm
where

- . P ..
H(u;") = H'(u;) + Ao'p_,.“i (15)
the new momentum correction equation becomes

- wm n, = __ _]‘_ i4_° ! An* — p" _li v
puir = ot = - - 32) [ -+ 450 )

where p/ = p* — p", and the pressure correction equation is

1 A B

(g - ) - er -
-1

—afi- (F-2) | et - = Akt a7

The capability to solve compressible flow with shocks by the PISOC
algorithm is achieved by the convection incremental pressure term, the
second term in the left hand side of equation (17). This term properly
takes into account the hyperbolic nature of supersonic flows.

The PISOC algorithm is a pressure correction method (PCM) in which
the pressure correction equations are solved. On the other hand, the
MFICE scheme is a pressure substitute method (PSM) in which the Poisson
pressure equations are directly solved in place of the continuity equation.
In the MFICE algorithm, the equation set is discretized as



1 n
5" = ")+ Adlpws) =0 (18)

Andl An
(pu,) = 1(pu;) _ A,(pu;)""'l — Hl(‘u?"'l) _ AiPn+1 + S?+1 (19)

To solve the fully implicit equations (18), (19), the MFICE scheme
employs the iterative solution procedure as shown below:

i. k=1,(p,p,pui)* = (pypui)"

ii. substituting (19) into (18) (also via equation of state p = pRT), we
obtain the pressure equation in the form

(- a) aet] = - a{ (- 4)
(o + Ht) + 5] (20)

which yields p*+! and thus solves for (pu;)**! by
1 1 n ']
(55 - A ) (o = F{pus)” + H(ul) + S (21)

i, if | p*** = p* |< ¢ then (p, p, pw)™** = (p, P, pu:)*=!, goes to the next
time step or else (p,p, pu:)* = (p, P, pui)*** k = k + 1, goes to ii)

This MFICE algorithm has the following characteristics:

¢ The MFICE, as compared to its original FICE, holds now the operator-
splitting (i.e, write H = A, + H) scheme to enhance the convergence
of the iteration procedure.

e We may write H in the form H,, or Hy, where the formerisa linearized
operator (depending on the n‘* time level results), and the latter is in

a non-linear form, which is updated during the k¥ — k + 1 iteration.
In MFICE H, is used.
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e The technique of introducing convection terms to the pressure equa-
tion, to mimic the hyperbolic property when supersonic phenomena
are involved, does not have much significance to MFICE, since the
term Op/ 8t in the continuity equation (1) is retained, which recovers
the hyperbolic property automatically. Therefore, MFICE does not
use this technique.

2.2 Boundary Conditions

The implementation of boundary conditions is one of the most complex
problems in computational fluid dynamics. The difficuities are due to var-
ious possibilities of combining different boundary conditions in a general
CFD problem. In addition a few special results are known about the
mathematical representation of boundary conditions to ensure existence
or uniqueness of the solution. For these reasons a discussion of general
boundary conditions of CFD problems is not undertaken here. In this sec-
tion only the most frequently encountered boundary conditions in fluid flow
problems and the treatment, necessary to incorporate them in the discre-
tised equations, are described.

2.2.1 Inlet Boundary Condition

At the inlet boundary, the values of all dependent variables are normally
known. These are usually obtained by reference to experimental data, anal-
ysis or estimation. These values can be substituted into the discretization
equations for the boundary control volumes and thus nothing special needs
to be done. Since the inlet boundary mass fluxes are generally known in in-
compressible flows (here only the velocity component normal to the bound-
ary is of concern), all intermediate values of u; at the boundary, namely,
u}" and u}**, are set to the given boundary value. This is equivalent to
prescribing zero gradient boundary conditions for the pressure correction
equation. It is readily implemented by setting the coefficient of equation
for the boundary node to zero. The same treatment also applies for outlet,
symmetry, and wall boundaries. The pressure at the boundary is obtained
by linear extrapolation from inner points.

In contrast to incompressible flows, the pressure or stagnation pres-

11



sure is often fixed at inlet boundary for compressible flows. The number
of variables that can be specified at the inflow boundary depends on the
number of incoming flow characteristics. For subsonic inflow, this requires
the specification of three variables. Whereas, if the inflow is supersonic, all
variables must be fixed. For the case of subsonic inflow there is a consider-
able choice as to which variables should be specified. For example, both the
velocity components and the pressure may be specified, or both the velocity
component and temperature may be specified. In internal flows, it may be
convenient to specify the stagnation temperature, stagnation pressure, and
transverse component of velocity or the inlet flow angles. Other variables
that are required at the inflow boundary are obtained by extrapolation
from the interior. If the pressure at the boundary is specified, then p* — p"
and p** — p° are set to zero, which serves as the boundary condition for
the pressure-increment equations. The normal velocities at the boundary
are updated by the continuity equation, and the tangential velocities are
obtained by linear extrapolation. If the stagnation pressure at boundary
is specified, the velocities are obtained by the same procedure described
above. From this velocity, the given stagnation pressure and the stagna-
tion temperature, static pressure and temperature can be calculated. So, it
is basically the same as the specification of a pressure boundary condition.

2.2.2 Outlet Boundary Condition

For incompressible flows the value of the dependent variables are gener-
ally unknown. The outlet boundary should be placed sufficiently far down-
stream from the region of interest. As a result, any inaccuracy in estimating
the outlet conditions will not propagate far upstream. In this study two
conditions are used to get velocities at the outlet. The first one is that the
velocity profile at the outlet is similar to the velocity at the first internal
point from the outlet. The second one is that the overall continuity must
be satisfied that is, the sum of outlet mass fluxes equals the sum of inlet
mass fluxes.

u° = au! and v° = av! (22)
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Mout = Z(u"ﬁy, - v%68z,) = Z a(u’éyo — v16z,) = M, (23)
o 1,0
Min
*= IZ(:) (ulby, — viéz,) (24)
where a is a scale constant. O denotes values at the outlet. I denotes the
first interior point from the outlet. When the new velocity is obtained at
internal points, equation (24) is employed to get a, then the velocities at the
outlet are updated by using equation (23). The other scalar variables are
obtained by setting all coefficients corresponding to the outlet boundary
nodes to zero. It is, therefore, appropriate to evaluate outlet boundary
values by extrapolation from upstream.

If flow is compressible, the number of variables that can be specified
is similar to the inlet boundary. It is equal to the number of incoming
characteristics. For a subsonic outflow, this requires specification of one
boundary condition. The variable that is usually fixed is the static pressure.
It is called the back pressure. The values of other variables are obtained
by extrapolation from the interior domain. For supersonic outflow, all the
variables at the outlet are determined by upwind information, no boundary
conditions should be specified, and all values of variables at the outlet are
obtained by extrapolation.

2.2.3 Symmetry Boundary Condition

The symmetry boundary condition implies two contents, no flow crosses
the symmetry line (or plane), and diffusive flux at the direction normal to
the symmetry line is zero. The first one can be satisfied by setting the
contravariant velocity (velocity normal to the symmetry line) to zero. The
second one can be met by setting all the coefficients corresponding to the
symmetry boundary points to zero. The values of variables at the symmetry
boundary are obtained by %n* =0,

(zi + y:) $n — (”ézn + yéyn) $n=0 (25)
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2.2.4 Wall Boundary Condition

For incompressible flow the no-slip condition is applied. The velocity of the
fluid at the wall equals the velocity of the wall. These conditions are easy to
impose. Because the velocity at the wall is known, the implementation of
wall boundary conditions is the same as inlet boundary conditions. There
are two types of boundary conditions: the temperature and other scalars,
fixed wall value and fixed wall flux.

For compressible flow there are two possibilities of wall boundary con-
dition, no-slip wall and slip wall. The no-slip wall is for viscous compress-
ible flows. The implementation is the same as for the incompressible wall
boundary. The slip wall is for inviscid compressible flows. This condition
is imposed by setting the normal component of contravariant velocity to
zero. The velocity at the boundary is obtained by a projection of interior
points along the wall.

3 EXTENSION OF THE NEW METHOD
3.1 Turbulent Flows

Implementation of a two-equation model (k — ¢), to include turbulence ef-
fects into this combined algorithm, has been developed for subsonic flows.
In the following, we discuss the new method and the implementation pro-
cedure.

The equations of fluid flows are written in general form:

Op O _
i) 0 Op 0
et 3;;(9"&“5) =%z T 5,0t Si (27)

In the equation above p is the density, u; the velocity components, p is
the pressure, S; are body forces and 7;; are the components of a deviatoric
stress tensor:

Ou; 61&,' 2 Bu, 5.'5] (28)

T ”[3::,- + dz; 30z
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As mentioned in the previous section, the PISOC algorithm is a pres-
sure correction method (PCM) in which the pressure correction equations
are solved. On the other hand, the MFICE scheme is a pressure substitute
method (PSM) in which the Poisson pressure equation is directly solved in
place of the continuity equation. The key issue is to include the momen-
tum source calculations and to ensure continuity (Eq. (26)) for a prescribed
number of corrector steps on a pressure equation. Here we seek a split op-
erator in a time domain such that the splitting error of the finite-difference
form of Eq. (2) is less than the truncation error of the temporal finite
differencing.

The splitting procedure described above is extended for solving other
scalar transport equations. In simulating turbulent flows, the well-known
k — ¢ model of turbulence requires solving transport equations for the tur-
bulence kinetic energy, k, and its rate of dissipation ¢. These equations are
strongly coupled, especially through the source terms. The splitting pro-
cedure presented here does away with iterations, however, a non-iterative
scheme must also be developed to deal with the other equations, such that
the accuracy and stability of the overall scheme are preserved. It is often
the case that the poor resolution of these scalar fields (including the species
equation for chemical-reacting flows) undermines the integrity of the overall
solution procedure.

The k — € model in differential form is:

) 8 ) 3
55 (PR + gotpusk) = - (g ) + S (29)
and
) ) 8, 9
5i(p9) + 5,7 (u19) = a(u.a—zj +5.) (30)
where
Sk =G — pe (31)
and
S.= %[CIG — Chpe] (32)
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and
G = —uyl u,lav is the generation term. The eddy diffusion coefficients
iy and p, are related to eddy viscosity by

nid
He = on
— K
He = 5.
. k?
resulting in the eddy viscosity u, = Cup (33)

The splitting procedure used in this study is to reconstruct the source
terms such that

p*Cy
He

Se = G — —2k? (34)

and

G k
S, = ClCu—pk - CzC,.pz—e (35)
He Hee
In doing so, the differential equations can be split into the following:

C# )- - Pn "
£ _ n k n, P2
(& K, +2 )i = Ki(k) + 6+ B

and Predictor:

(36)

k* G n_n
(ﬂ Sy C-.-Cpp’ﬁ) € = LI(e") + Cr - Cppk” + - (37)
¢ t

5t 5t
Corrector:
(£-K.+° £°Cy g )k = KI(k") + o+ 28 (38)
5t o = He 5t
and
k-" - . g - ann
(E = Ly + C1C,p? M) = L") + Cr - Cuok™ + 5= (39)
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It can be shown that k™" and £ are second order approximations in 6t
to the original equations (25) and (26). Thus, further corrections in k and
¢ are not needed.

3.2 Chemical Reacting Flows

The pressure-velocity procedure has also been extended to compute chem-
ically reacting flows. In reacting flows, very large density gradients arise,
leading to strong non-linear coupling of the equations. The incorporation
of the species and energy equations demands significant restructuring of
the predictor and corrector steps in the algorithm.

The governing equations for multiple species undergoing chemical re-
actions are the continuity, momentum, energy, and species equations. In
generalized tensor notation they can be written:

8 8

i 'é;;(P":’) =0 (40)

) 3 _ 8 @ Oui  Ouj\ 2. Ous

at(pui) + a—zj(Pui“J) = "oz T dz; [“ (6z,- + az,-) - 35"#321.]
(41)

8 ) 9 [.on] . 9p

B0+ o) = 52 [P + DAk + 3 )

8 vy O a8 (pOB)
a(l’fl‘) + 5:;(’"‘:!:) = R; + az’. (raz’) y TF 1v2s---vN (43)

where p is the density; u; the velocity; p the pressure; u the effective
viscosity; h the static enthalpy; I' the effective diffusion coefficient; f; the
mass fraction of chemical species; and R; the chemical source term.

In addition to the equations described above, expressions are required
for the thermodynamic quantities. In the present study, the JANNAF data
bank [33] and the CEC76 program were incorporated for chemical equilib-
rium and thermodynamic property estimations. In the CEC76 program,
the minimization of the Gibbs free energy method was used to calculate
the composition of chemical equilibrium species. The static enthalpy and
the fluid density are then obtained by:
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N
k=Y fihdT) (44)

=1

and

N
p=p/RT Y 37— (45)

i=1
where R, is the universal gas constant; and Mw;, the molecular weight of
species.

For finite rate chemistry, the production rates for each of the species
(R;) required in Eq. (43) are obtained using the laws of mass action. For
a general homogeneous chemical reaction, which may proceed in both the
forward and reverse directions, the stoichiometric equation can be written
as

N keys N
EV};A.’ p— EV.;-',-A,', J= 1,2,... ,Nr (46)
i=1 kp; =1

where Ng is the number of reaction steps.

The law of mass continuity states that the net production of species ¢
by reaction j is:

dc, ‘o T % _ g TT O
J 13 =
where C; is the concentration of species. The net rate of change in concen-

tration of specie i by all reactions is found by summing the contribution
from each reaction considered

dC,-) Ne (dC;
=) == (—) (48)
( dt m\dt/;

In reacting flows, a coupled implicit solution procedure of a chemical
kinetics/fluid dynamics problem would require the inversion of a complex

system of matrices. In the present methodology, the chemical kinetics and
the fluid dynamic solutions are decoupled in performing the integration by
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using the operator-splitting technique (35, 36]. This procedure is embed-
ded in the previously described predictor-corrector sequence with special
treatment of the species equation. Using the operator representation, lets
the governing equations be written in the following form:

2k o)+ D(£) = R (49)

where C() and D() are convective and diffusive operators for species f;
respectively.

To facilitate the splitting technique, the chemical kinetic solution only
involves a time dependent term during the predictor step. Thus, the equa-
tion

%pf.- = Ri(fis fas- -+ fn) (50)

is integrated in a fully implicit fashion. The effective chemical source terms
are then determined by dividing the increment of the chemical species by
the fluid residence time.

Subsequently, the convection and the diffusion part of the species equa-
tions are then implicitly integrated in the correction step. The corrector
step integrates the fluid dynamic part with the effective chemical source
terms from the predictor step as follows:

C(F)+ D(fi) = (ig—{-"—) y (51)

3.3 Multiphase Flows

The pressure velocity procedure is extended to include the dynamical equa-
tions for spray droplets. Due to the strong coupling between two phases in
terms of momentum, heat and mass exchange, the incorporation of the dis-
persed droplet phase requires considerable extension of the corrector steps
in the algorithm. These new formulations are described in this subsection.
The general approach used for gas/droplet flows in this study is the so--
called "tracking” approach. This approach requires formulating droplets
dynamics in a Lagrangian frame within the continuum media for which
an Eulerian formulation is utilized. This approach has the flexibility of
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handling a poly-dispersed spray system and is ready for extension to dense
spray effects, as compared to the "two-fluid” approach. In the Eulerian-
Lagrangian two phase approach, the governing equations for gas phase are:

i) g .
" + éz(pUi) = Sm (52)
0pU; 0 _ Op d =
a‘t + azJ(PUJU|) - —az,- azj(ru) + F't (53)
and for the particles:
dz;
2 (54)
dv;
El:— = Fi + g (55)

Since the formulation here is essentially a statistical approach, each
computational parcel represents a large number of droplets having equal
location, velocity, size, and temperature. The two-way coupling between
the two phases is accounted for by the interaction terms, where

, [T
Fo=itsio¥% (56)
T
. NP
Sm =Y Nytieop/dV (57)
p=1
for evaporating spray
Np . 4 dv,-
F=Y [N,m,,,', (vi), — awpdr:N, (E )] /dV (58)
p=1 P

in which dV denotes the computational cell, and the effective relaxation
time r =t./f, with t. = psd3/18 and f = CpRe,/24.

The goal of the present method is to build the coupling procedure of the
two- phase interactions in a non — iterative, time — accurate frame which
eliminates the conventional global iterations between the two-phases as de-
picted in the Particle-Source-In-Cell (PSIC) [37) methodology. The PSIC
method first proposed by Crowe at Washington State University in the late
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1970’s, is still the state-of-the-science methodology and is widely used in
industry. Our method arranges the two-phase coupling into a sequence
of predictor-corrector steps, utilizing the operator-splitting technique, and
thus does not require global iterations. This method is described briefly as
follows: We seek the finite difference form of the governing equations (49)
and (51) as follows

(£ - 4)Ur = BOUZ) ~6P™ 4 S E ()

and

ot —ur UM+ U -t
ot B ="

The superscripts n and n+1 denote time events t" and i"*1 respec-
tively. Operator A, and H'( ) are constructed from the second-order up-
wind scheme for the convection term and the central difference scheme for
the diffusion term, respectively. The effective relaxation time r is evaluated
at the second corrector level (**), to be defined later. The key step in our
method is the separation of the interaction term as follows:

+ gi (60)

Fp*t = —STURT 4 RS (61)

F* = -8U7 + Ry (62)

and so on. .
In the above splitting procedure, the terms S;* and Ry" are obtained by
rearranging equation (56): '

S = 31‘7 f; N, M,/ (8t + ;) (63)
and
Rr = L :‘f N, M,/ (6t + f‘) (V* — u; + g:6t) (64)
u dV = P : 1 4

We now divide the predictor-corrector procedure as follows:
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Predictor Step

(% _ Ao) Ur = H'(U7) - 6™ + Si — S2UT + R, (65)
V-V )" -
M NS 4 =t

5 (66)

To strongly couple the interaction terms, we use the solved V" and v}
to evaluate 7*, S, and R, such that a second approximation to the gas

velocity can be performed:

,rn

(% _ A.,) UT = H'(UT) = 6™ + Si — SRUT + R, (67)

This is the essential step which eliminates the global iterations. A similar
procedure was derived for the first corrector and the second corrector step
involving droplet source terms in the pressure correction equations [38].
Turbulence effects then are added during the corrector steps. This approach
is a unique approach, including a non-iterative feature which is consistent
for all the physics involved. The algorithm is time accurate and requires
no under-relaxation for ail the steps involved.

4 VALIDATION STUDIES

We have carried out detailed linear stability analyses based on model equa-
tions and von-Newman Fourier mode technique. Both algorithms are shown
to be unconditionally stable with second order accuracy on time domain
discretisation. Detailed discussions can be found in the Ph. D. disserta~-
tions of Zhou {39) and Jiang [40]. Both algorithms have been successfully
coded into existing CFD codes. Specifically, the PISOC algorithm is im-
plemented in the MAST computer code for the first predictor and the re-
maining corrector steps were established to utilize the concept of MFICE
algorithm. This iteration sometimes is required especially for transonic flow
calculations. Various cases including both steady-state and time-dependent
incompressible flows, subsonic, transonic, supersonic and hypersonic flows -
involving turbulence effects, chemistry effects as well as multiphase flows
were studied and validated against relevant experimental data or other CFD
results in the literature. In the following, highlights of these results will be
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summarized. Other details involving grid set-ups, grid sensitivity studies,
convergence histories and boundary condition set-ups can be found in the
three Ph.D. dissertations. {39, 40, 41].

4.1 Driven Cavity Flow

A square two-dimensional cavity with the top wall moving at a constant
speed is calculated for the Reynolds number 1000 and 10,000. this case
converges in one run in 80 CPU (CRAY/XMP) seconds with 6t = 1.0
and a 51 x 51 grid system. Figure 1(a&b) shows the computed streamline
contours for Re = 1000 and 10,000 respectively. The contours are plotted
with the same level of Ghia [42), who used a much finer grid system and
long run time. This study demonstrates the accuracy of the current method
and insensivity of the convergent rate due to grid refinement.

4.2 Two-Dimensional Circular Cylinder

The flow over a two-dimensional circular cylinder is an example of the
external unsteady flow when the Reynolds number is not too small. A
41 x 41 “0"-grid was algebraically generated. A fixed velocity was set at
the outer boundary and a cyclic boundary condition was set at the front
center line. Instantaneous stream function plot at several time steps are-
shown in Figure 2. More detailed calculations and comparisons of this case--
can be found in [43]. 500 Steps of this calculation take 175 CPU seconds-
and 0.2 M words core memory. This study demonstrates the time-accurate
aspect of the current algorithm.

4.3 Backward Facing Step Flows

Both benchmark cases of the laminar and turbulenct viscosity flows over a
two-dimensional backward facing step were tested. For the laminar case,
a critical case of Re = 800 is selected and the standard k — ¢ model is
implemented for calculating the turbulent flow case. A 81 x 51 uniform
grid was used and the time step 6t = 0.5 was taken for the laminar flow -
case. 350 time steps are used to reach steady-state solutions with the
reattachment length at 11.5 step heights which compares favorably with
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t=95

t=96.3125

t=98.9375

t=100.25

Figure 2. Instantaneous streamline pattern for flow over a cylinder at Re = 200.
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INS3D results. A 47 x 33 non-uniform grid is used for the turbulent flow
case. The calculated reattachment length is 6.18 step heights; in good
agreement with other CFD results [44]. The turbulent flow case took 60
CPU seconds for 90 time steps (6t = 0.6). The calculated streamlines are
shown in Figure 3 and 4 for the laminar and turbulent flow case respectively.
This study demonstrates that the extention to include turbulence models
does not affect the efficiency of the algorithm.

4.4 Quasi-One-Dimensional Inviscid Flow

The above mentioned algorithms were then implemented into the MAST
code for one -dimensional benchmark case calculations to cover a wide
range of Mach numbers. First, a one-dimensional symmetric noszie flow as
calculated for subsonic, supersonic and shock flows. The calculations were
performed on a uniform spacing of 101 grid points. Initial conditions for all
variables were set over the whole domain as being constant and equal to the
known analytical solution at the inlet with the exception of the exit pressure
which was set at a fixed value. The inlet boundary condition consisted of
extrapolating the static pressure from the interior which, together with the
given values of total pressure and total temperature, allows an isentropic
calculation of the other variables. At the outlet the static pressure was held
fixed, and any unknown variable was found from the extrapolation.

Figure 5 shows the steady state Mach distributions for subsonic, chocked
and supersonic flows. This study demonstrates the most important features
of the results, which are the capabilities of low to high speed flow calcu-
lations, the sharpness of shock capturing, accuracy of shock positioning
and speed of computation. The efficiency assessments of the algorithms
are summarized in Table 1. Examination of Table 1 shows that the algo-
rithms gave satisfactory shock capturing results with large CFL number
and converged fast for all special flow regimes.

4.5 Compressible Channel Flows Over a Circular Bump

Validations of the PISOC algorithm for all-speed capabilities were further
tested for two-dimensional flows. All the calculations were performed using
a normalized time step of 0.1 for 100 time steps to reach steady state
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Figure 3. Streamline of laminar flow over backward facing step.
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Figure 4. Streamline of turbulent flow over backward facing step.
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Figure 5. Quasi-one-dimensional inviscid.nozzel flow.
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Figure 6. Results of bumped channel flow (M_,, = 0.5).
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Figure 7. Resuits of bumped channel flow (M_., = 0.675).
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Figure 8. Resuits of bumped channel fiow (M_,, = 1.4).
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solutions. Initial values for all variables were set constant over the whole
domain for the flows tested, ranging from subsonic to hypersonic conditions.

The calculated Mach number contours and surface Mach number pro-
files are shown in Figure 6-9 for subsonic, transonic and supersonic features
of the results showing the capabilities of low to high speed flow calculations,
the sharpness of shock capturing, accuracy of shock positioning, and speed
of computation. The efficiency of the algorithms is very consistent. For all
cases tested the CPU is 0.18 ms per grid point per time step, which is a very
fast convergence rate among the available pressure-correction methods. An
axisymmetric inviscid flow striking a blunt body leading edge with a free
stream mach number up to Ma, = 10 has also been tested, and the calcu-
lated static Mach lines and the static temperature along the axisymmetric
line are shown in Figure 10.

4.6 Chemical Reacting Flows

A careful validation of the present MAST code with both equilibrium chem-
istry and finite rate chemistry has been carried out. First, an equilibrium
chemistry example involving hypersonic viscous flow, with free stream Mach
number of 10.0 past a two-dimensional blunt body with circullar nose is
tested. The Reynolds number is 8,600 and the free stream temperature is
assumed to be 300 K. Figure 11 illustrates the iso- Mach contours of both
the ideal gas case and the equilibrium air case. In Figure 12, the calcu-
lated static temperatures are plotted along the flow symmetric line. The
effects of equilibrium chemistry on the static temperature jump and shock
location are significant in these calculations, which agree well with other
calculations in the literature.

The second case was the low-speed Burke-Schuman diffusion flame. The
geometry and inlet conditions are illustrated in Figure 13. A global two-
step Methane/Oxygen finite rate reaction model of [45] is employed for this
case. The calculated flame temperature contours and mass fractions along
the centerline are shown in Figure 14. The results compare very well with
the analytical solutions reported in [47]. This study demonstrates XXX.
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Figure 11. Viscous hypersonic flow over a blunt body, 81 x 41, (a)
Ideal gas air, (b) Equilibrium chemistry air.
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Figure 13. Schematics of low speed diffusion flame.
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Temperature Contour of Low Speed Diffusion Flame
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Figure 14. Resuits of low speed C H,/Air diffusion fiame.
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4.7 Multi-phase Flows

For multi-phase flows, we first applied the current method for the predic-
tion of particle dispersion controlling the turbulence with the mounting of
different screens. The experimental set up of this case was conducted by
Snyder and Lumley in 1971 [46]. Particle densities and sizes are chosen to
examine the dispersion of light and small (46.5 pm diameter hollow glass),
as well as heavy (87.0 um solid glass) particles. Five thousand computa-
tional particles were sampled to calculate the mean squared dispersion with
respect to time. Comparison of the predicted and measured particle disper-
sion are shown in Figure 15. The agreement is considered quite good. The
current method has the flexibility of taking into account both the gravity
(crossing trajectory effect) and the non-stokian drag law as compared to
the continuum approach and time accuracy.

A poly-dispersed puised hollow-cone spray case of practical importance
is also chosen for the test condition listed in Table 2. The calculation starts
at 5 mm downstream of the nozzle, and the information of particle size
distribution and velocity distribution is directly taken from the measure-
ments. Figure 16 shows the particle distribution plot and the gas velocity
vectors for a 30 deg spray. With the back pressure of 1 atm, the intersection
between the gas and the droplets trajectories is quite strong. The shape
of the spray is no longer conical even for a very short time, and the spray
penetration is suppressed due to the interactions of the droplets with the
induced air flow. These flow patterns and spray shapes compared quite
favorably with the experimental resuits.

The efficiency assessment of the present numerical method is shown in
Table 3 for the hollow cone spray case. The CPU time on a CRAY X/MP
using the MAST code utilizing the present method for the transient spray
calculations with 8¢ = 0.1ms is given. It can be seen that the amount of
CPU time is reduced about one order of magnitude by using the present
method. Also, the present method is rather particle number independent.
This is due to the fact that the particles at each time step, and the source
terms in the continuous passes, are updated for all the particles at each
Fulerian control volume. In contrast for the TEACH/PSIC method, all
the particles have to be tracked, and the continuous phase flow field is held
frozen between the global interactions at each time step.
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Dispersioa (cm?)

Figure 15. Particle dispersion in a flow with mechanically produced turbulence.

Chamber Injection Injection Gas Mass Sauter mean
gas pressure velocity angle density flow rate radius (SMR)
(atm) (ms™') (deg) (kgm™?) (kgs™') (4m)
1 200 30 1-123 4x10°4 25
Table 2. Hollow cone spray
MAST 2D TEACH/PSIC
Particles CPU time (s) Particles CPU time (s)
Single-orifice spray :
41 x 61 grid 600 1269 800 1420
300 time steps 1200 1357
Hollow cone spray
31 x 31 grid 400 749 800 934
200 time steps 1000 883

Table 3. Efficiency assessment of numerical method.
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The pressure-velocity algorithm developed in this study can be imple-
mented in the framework of finite-volume, finite difference, or finite-element
formulations. All the extensions of the current algorithm, including turbu-
lence models, chemistry models (equilibrium and finite rate), and particle
tracking subroutines were incorporated into the MAST code in a modular
form. These submodel modules are stand-alone solvers and can be trans-
ferred from one code to another with few modifications. For example, the
chemistry module originally tested in the MAST code was transferred to
the MFICE code which utilized staggered grids and iterative procedures
with sucessful applications within one month period.

5 CONCLUSIONS AND RECOMMENDA-
TIONS

5.1 Summaries

Efficient pressure-velocity coupling procedures have been developed and
investigated for the calculation of fluid flows at all speeds. Two algo-
rithms, PISOC and MFICE were studied, and a combined algorithm was
implemented into an existing CFD code, MAST, with physical submod-
els including two-equation turbulence models, equilibrium and finite-rate
chemical reaction mechanisms and gas-droplet multiphase models. Some
important conclusions are summarized as follows:

1. A physics-consistent pressure equation is derived to emcompass flows
in all Mach number regimes. This pressure equation is implemented
in the PISOC algorithm as a pressure correction method and in the
MFICE algorithm as a pressure substitution method.

2. Both PISOC and MFICE algorithms are non-iteration algorithms and
are unconditionally stable, based on linearized stability analyses.

3. The pressure-velocity algorithm can be extended to include extra
physical submodels, including turbulence, chemistry, and multiphase
flows without invoking iteration procedures.
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4. The current algorithm can be implemented on both staggered and
non- staggered grid systems without deteriorating the computational
efficiency.

5. Time accuracy can be achieved within prescribed predictor corrector
steps without invoking iterations.

6. Extensions for arbitrary body-fitted coordinates do not affect the
computational efficiency.

5.2 Algorithm Limitations

Although the current method is developed for general time-accurate tran-
sient and steady state flow calculations, the time accurate aspect of the cur-
rent method for high speed transient calculations is not firmly established.
This aspect is strongly coupled with the spatial discretization of the govern-
ing equations. In addition, the finite rate chemistry procedure, currently
implemented, is only loosely coupled with the fluid dynamics, based on the
operator-splitting method. To accurately account for the aero-thermal phe-
nomena, transient chemical reacting flows, such as the ignition processes,
and the thermal property changes due to chemistry, have to be strongly cou-
pled with the fluid dynamics through the continuity equation. With the
present operator splitting, the current pressure-velocity algorithm cannot
be used for time-accurate high-speed and chemical reacting flows involving
complex chemistry.

5.3 Recommendations

The future work only concerns the numerical aspects of the pressure-based
method.

1. The pressure-velocity coupling procedure should be further explored
to include density and temperature effects, due to complex chemistry
and other sources, to establish strong coupling among fluid dynamics,

thermal energy, and species to achieve time accuracy with arbitrary
chemical kinetics.
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. More complex flows will result in more sparsity in time scales asso-
ciated with various physics. Although the current method is stable
using rather large time steps, adaptive time step adjustments should
be devised, to match the solution based on optimal time steps asso-
ciated with the relevant physics.

. Due to the capability of the current method to cover both incom-
pressible and compressible flow regimes simultaneously, the pressure-
velocity algorithm should be extended to include volume displacement
effects due to the co-existence of liquid and gas with the same cal-
culation grid. This will involve reformulating the momentum and
mass fluxes across the grid boundary and modifying the “pressure”
equation within the grid.

. Currently, the solution method, such as the conjugate gradient square
method used here, for solving the pressure equation, is still inefficient.
Multigrid methods or multi-level error propagation methods should
be included in the future, to speed up solving the pressure equation.

. For complex configurations, the pressure-velocity coupling procedure
should be extended for implementation into multi-zone methodolo-
gies. Coupling between calculation zones, involving different bound-
ary conditions, should be developed to smoothly transfer information
back-and-forth in the pressure-velocity coupling mode especially for
unmatched grid patching.
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Appendix 2
Sample Inputs and Resuits

A. General Input File

The MAST family computer programs consists of a set of subroutines controlied
by a short main program. The fundamental structure can be found in the MAST user’s
manual version 1.0 [47]. The updated capabilities, resulting from the current study, are-
summarized in Table A.1. In the following, the updated input file descriptions and the
handling of boundary conditions for the 2-D/Axisymmetric MAST code are described.

The Input structure used in the MAST code utilizes blocks of optional namelists .
under several keywords. Each of the keywords and associated namelists are described
here. These "keywords" are optional, i.e., skip if not needed.

There are nine keywords built into the current MAST code. These are : GRID,
BOUND, SOLV, PROPERTY, TURBULEN, SPRAY, REACTION, RUN and
ENDIJOB. In addition, there is one extra block called CONTROL which is used for
identifying numeric options in the code. The CONTROL block is usually created first in
the input file to be read into the program through Logic Unit 1. All entries are optional. If
certain entries require numerical values or logical values, they are entered after the entry-
names, scparated by at least one blank space. SI unit is used for required numerical values.
Block name, entry names, the possible range of values, and a short description of the
variable are described as follow.

1. CONTROL Block : This block is always put at the top of the input file.

RESTART: It activates the usage of a restart file as initial
conditions by reading through LU=4.

SWIRL: It activates the swirl velocity calculations.

IMON,JMON: It specifies the monitor grid point at 2-D map (IMON,JMON),
this allows the user to monitor the convergence progress for
the selected monitor variable solved.

The default value is (2,2).

MONU,MONV,

MONP, MONTEMP,

MONTKMONTE: Only one variable can be specified as a monitor variable tracking on
screen. Such as velocity at (x,y) location, pressure,
temperature, turbulent kinetic energy,
dissipation rate. The defauit is MONU.
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ERRCG:

NCGM:

INCOMP:

COMPRES:

OMGD:
NCRT:

OMGEF:

OMGT:
PHI:

OMGPHI:

END:

For example, a typical CONTROL block for running a laminar backward-facing step~
flow using a second order upwind scheme and monitoring the convergence of U velovity -

Convergency criterion for conjugate gradient

Matrix solver. The default value is 0.01.

Maximum Conjugate Gradient solver iteration number.
The defauit number is 100.

Termination criterion for steady state solutions

using the time marching scheme. The defanit value is 0.0001.
Incompressible flow calculations (=1).

(INCOMP=0) Compressible flow options.

1 for supersonic flows, 0 (default) for low speed
flows.

Number of corrector steps (default=2).

Interpolation parameter for face velocities

1 for interpolation and 0 for averaging.

The defauit valueis 1.

For supersonic temperature field relaxation.

Parameter in the finite difference limiter.

1 --- central, 1/2 -— no name, 1/3 --- 3rd order upwind,

0 --- Fromm schem, -1/2 -— no name, -1 —- 2nd order upwind.

Weighting parameter for upwind scheme and other scheme.

Numerical value of OMGPHI ranges from 0. to 1. The resuiting

scheme is weighted according to:
PHI*(1-OMGPHI) + 1st order upwind scheme*OMGPHI
End of Block input.

on grid point (17,4) would have the following input block:

CONTROL INCOMP OMEGD 0 PHI -1.0 OMGPHI 0.0 ERRCG 1.E-1 ERRM 1.E4
IMON 17 JMON 4 MONU OMGF 0.2

A typical CONTROL input for compressible flow calculations is given in Figure A.1.

2. GRID Block:

NX:

Number of grid points in the x direction (>3).
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NY: Number of grid points in the y-direction (>3).
XLEN: It identifies the length in SI unit of the entire physical calculation
domain in the x direction.
YLEN: The length of the entire calculation domain in y direction.
READXY: It activated reading of an externally generated grid point X(1J),
and Y(1J) from input file "sgrid.d". The input
format is given as:
- READ(4,9910) NX,NY
READ(4,9920) (X(L)),I=1,NX),J=1,NY)
READ(4,9920) ((Y(1,J),I=1,NX),J=1,NY)
9910 FORMAT(2IS)
9920 FORMAT(10E10.4)
This input format can be modified by the user.
UNIFORM: It specifies a uniform grid system.
XDIR,YDIR: It specifies an X-direction grid (only
dependent on I) or a Y-direction grid (only dependent
on J). Either one must be specified at the beginning of a line.

IST: The grid cell starts from IST index

IEND: The grid cell ends with IEND index

DST: The grid cell starts from DST

DEND: The grid cell ends with DEND

EXP: Grid space stretching factor (see the footnote *) using the power law
formula.

DELT: First grid cell size. EXP and DELT can
be specified only once.

*_--"power law" formula. Such a grid generation can be described as follows:

(a) Explicit "power law":

For example, XDIR IST 10 IEND 25 DST 3.2 DEND 5.6 EXP 1.5, the power-law formulation
for such a grid distribution internally caiculated as:

I-IST
X(1,J) = DST+| ————| (DEND-DST)
IEND-IST
I=IST.,........ IEND for EXP>0

X(I,J)=DEND—( IEND- [

IEXP1
———) (DEND- DST)
IEND-IST
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I=IST,........

. If EXP = %1, grid is uniform

. IfEXP > 1, grid is compressed close to DST and expanded close to DEND.

. f EXP < -1, grid is expanded close to DST and compressed close to DEND.
. EXP >1 and exp < -1 can be used to give a symmetric grid distribution.

(b) Implicit "power-law" :
If the user specified first grid cell size DELT instead of EXP, the grid generator
automatically computes the stretching factor, EXP, and distributes the grid maintaining the
first grid size DELT = X(IST +1, J) -X(IST, J) for DELT > O or the last grid size [IDELT!
=X(IEND, J)-X(IEND-1, J) for DELT < 0.

For example,a typical grid system used for a driven cavity flow in a square domain of 1
meter by 1 meter with grid clustering near the wall regions and top driven lid region can be
specifies using the power law formula with a streching factor 1.5 as:

GRID NX 51 NY 51

XDIR IST 1 IEND 26 DST 0.0 DEND 0.5 EXP 1.5
XDIR IST 26 IEND 51 DST 0.5 DEND 1.0 EXP -1.5
YDIR IST 1 IEND 26 DST 0.0 DEND 0.5 EXP 1.5
YDIR IST 26 IEND 51 DST 0.5 DEND 1.0 EXP -1.5

3. Property block (PROP)

VISCOS:

DENGAS:

CPGAS:
KGAS:
PRG:
TIN:
PIN:
UIN:
VIN:
OMEGA:
GAMMA

PSTAG:
TSTAG:

It specifies the fluid viscosity. The defauit value is 1.

It specifies the fluid density. The default value is 1.

It specifies the fluid specific heat. The default value is 1.

It specifies the fluid thermal conductivity.The default value is 1.

It specifies the fluid Prandtl number. The defauit value is 0.74.

It specifies the flow field initial temperature. The default value is 0.
It specifies the flow field initial pressure. The default value is 0.

It specifies the flow field initial U velocity. The default value is 0.
It specifies the flow field initail V velocity. The defanit value is O.
Angular momentum

Ce
Y==
Cy
It specifies the flow field total pressure at the inlet. The default value is 0.

It specifies the flow field total temperature at the inlet. The defanit value is 0.
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Typical examples of using this input block to idendity invisid and viscous flow calculations are
given in Figure A.1 and A.2.

4.Runtime block (RUN)
DT: It specifies time step.
DTMIN: It specifies the minimum time step.
DTMAX: It specifies the maximum time step.
CFLN: It specifies the CFL number.
The default value is 1.
The real DT is calculated based on CFLN. If it is less than DTMIN,
DT=DTMIN.
NSTEP: Maximum time step number to be computed.
NPR1: It specifies the screen monitor output frequency.
NPR2: It specifies the monitor output restart file frequency.
NEX: It specifies the example number. The user can code in

SUBROUTINE EXAMPL. If this option is used, no other
input data is required unless a change is desired.

LPFAC: It specifies the monitor to output control volume face quantities.
The default value is 0.

LPGEO: It specifies the monitor to output the Jacobian coiefficients.
The default value is 0.

STOP: If this keyword is specified, MAST code

only checks the input data and no execution is done.
For exampile, to run a job using time step 0.1 second for 300 time steps and to monisor the
convergence progess every 10 time steps and save results every 100 time steps requires:

RUN DT 0.1 NSTEP 300 NPR1 10 NPR2 100

5. Yariahle solution block (SOLV)

U,V: It idendify the velocity component to be solved.
P: Pressure will be solved.
TEMP: Temperature will be solved.
TK, TE: Turbulence kinetic energy and dissipation rate will be solved.
SwW: Swirl velocity will be solved. (SWIRL must be activated in Selection block).
PATC: Particle tracking is active.
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Examples using this input block for running laminar and turbulent flows are given in Figures
A.land A.2.

6. Turbulent block (TURBU): CT1, CT2, CMU, SME, SMK : Turbulence model constants
CT1=1.44,
Cr2=192,
CMU =0.09,
SME =1.3,
SMK =10,
TKIN, TEIN : They specify the initial value of turbulence kinetic energy and
the dissipation rate. The inlet TKIN is usually estimated based on
TKIN=0.01xUINxUIN and the measured TEIN should be used. If
no information is known, the dissipation rate is calculated based of
some estimated turbulence length scale SCALE.
SCALE: If SCALE specified, TEIN is calculated
as TEIN = CMUx TKIN*/ SCALE

7. Spray block (SPRAY)

SMR: It specifies the particle Sauter mean radius.
If SMR < 0, it specifies a constant particle radius.
X-SQR: It specifies the built-in Chi-square droplet size distribution.
DENPT: It specifies particle density.
TEMP: It specifies particle temperature.
IST, IEND,
JST, JEND: Particles are injected from a interval specified from grid
(IST, JST) to (IEND, JEND)
FLOWP: It specifies spray flow rate.
VINI: It specified particle injection velocity.
NPTS : It specifies particle parcels per time step.

The following example illustrate a solid-cone spray due to a point injection:
SPRAY SMR 150.E-6 X-SQR DENPT 840 TEMP 298
IST2IEND 2 JST 2 JEND 2 NTPS 5
VINJ 86.41 FLOWP 5.13E-3
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8. Boundary block (BQUND):
Boundary conditions must be specified in a patched form:
IST, IEND, JST, JEND, B.C. type, variable names.

The variables are defined as
IST, IEND: The starting and finishing points in the I direction grids.
JST, JEND: The starting and finishing points in the J direction grids.

If IST=IEND or JST=JEND, then a line boundary condition is used.
The following keywords -used to specify B.C. type :

INLET: Inlet boundary condition, followed by variable names to be described-
OUTLET: Outlet boundary condition.
WALL: No slip wall boundary condition, followed by
variables. Wall function of turbulence model activated.
SYMMETRY : It specifies a symmetric b.c.
CYCLE: It specifies a cyclic b.c.
BLOCK : It specifies a blockage. Wall functions

of turbulence model activated on block face.

Variable name keywords (specify b.c.)
x-direction velocity.
y-direction velocity.
Turbulence kinetic energy in INLET.
Turbulence dissipation rate in INLET.
Temperamre at INLET, WALL or BLOCK.
It specifies the wall heat fluxes. The default value is 0.
YH2, YO2, YHO, YH20, YH, YO, YHO2, YH202,YO3 :
Mass fraction at inlet.
The default values are 0.
Examples for this block can be illustrated by the calculations of a incompressible
turbulent backward-facing step flow as follows:
BOUND
IST 1 IEND 59 JST 1 JEND 1 WALL
IST 1 IEND 59 JST 35 JEND 35 WALL
IST 1 IEND 1 JST 16 JEND 35 INLETU 1.
IST 59 IEND 59 JST 1 JEND 35 OUTLET
IST 1 IEND11 JST 1 JEND 15 BLOCK

§egHA TS
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9. Reaction block (RCHEM)

EQLM: It specifies the equilibrium chemical reaction.
This option requires another input file ‘chem.in’.
The defanit value is 0.
The input file “chem.in” requires the following keyword:
ns: Number of species to be calculated
Numver of elements o be considered.
Number of species to be frozen if ‘frozen’ is activated (T).
Element convervation constant, a set of ‘ne’ numbers.
For example, air 102+3.76N2 has
number of element O=1x2=2
number of element H=3.76x2=7.52,
thus tne conservation constants are 2,7.52 or 1,3.76.

chemical species

chemical element

frozen T to activate the frozen chemistry option
A typical example is given in Figure A.4

FINIR: It specifies the finite rate chemical reaction.
The default value is 0.

LCHEM: It specifies the the finite rate reaction model.
The defauit is 0.

LCHEM = 1 : 2-step H2 + O2 model.

LCHEM = 2 : 8-step H2 + O2 model.
INISPE: It specifies the species be given initail values, the default value is 0.
YH2, YO2, YHO, YH20, YH, YO, YH202, YO3, YHO2:

It specifies the initial mass fraction of species.

The defauit values are 0
RATIO: It specifies the equivalence ratio in 2-step H2+02 model.

Examples for chemistry block can be seen in Figures A.3-A.S.

10. ENDJOB: ENDIJOB identifies the end of the input file.
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B. Sampie Calculations

In this section, five sample calculations of SSME thrust chamber flows are presensed..
The input files used for the calculations are shown based on the geometry and inlet
conditions of [48] as well as the calculated iso-Mach contours and temperature contours: in
Figures A.1-A.S. The five cases chosen are for inviscid, turbulent non-reacting calculations
with the k-epsilon model, turbulent reacting flow with equilibrium chemistry, turbulens-
reacting flow with a 2-step reaction kinetics model according to {49], and turbulent reacting: -
flows with a 8-step reaction kinetics model [49]. The calculated vacuum specific impuise -
values are also shown in the figures, which may be compared with experimental data of
453.3 seconds.

Finally, Table A.1 exhibits an updated MAST code capability status from the previouns
survey date of October 1990 shown in Ref. [50].
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SAMPLE CASE 1

CONTROL COMPRES NCRT 3 OMGM 1 NCGM 50

OMGD 1.0 PHI -1.0 OMGPHI 0.00 OMGT 0.50 OMGF 1.00
ERRCG 1.0E-2 ERRM 5,0E~6 IMON 81 JMON 10 MONU
i RESTART

GRID NX 81 NY 41 AXISYM READXY
BOUND

ISsT 1 IEND 1 JST 1 JEND 41 INLET
IST 1 IEND 81-: JST 41 JEND 41 SLIP Q 0.
IST 1 IEND 81 JST 1 JEND 1 SYMMETRY
IST 81 IEND 81 JST 1 JEND 41 OUTLET
TURBULENT TKIN 3.072 TEIN 10000.
PROPERTY VISCOS 0.0
PSTAG 20240946.90 TSTAG 3637. GAMMA 1.2 GMW 10.18
SOLV U V P TEMP TK TEB
RUN DT 1.E~-5 DTMIN 1.0E-7 DTMAX 1.E-2 CFLN 1.00 NSTEP 100
NPR1 1 NPR2 100 NEX 18 ; LPFAC ; LPGEO

ENDJOB ! !
CONTOUR OF MACH NUMBER
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Figure A.1 Sample SSME Nozzle Flow Inputs and Results —--— Inviscid.
ISP = 524.44 sec.
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SAMPLE CASE 2

ZCNTROL COMPRES NCRT - OMGM 1 NCGM S0

CMGD 1.0 PHI -1.0 OMGPHI 0.00 OMGT 0.50 OMGF :.00
ERRCG 1.0E-2 ERRM 1.0E-5 IMON 81 JMON 10 MONU

; RESTART
SRID NX 381 NY 41 AXISYM READXY
BOUND
IST IEND 1 JST 1 JEND 41 INLET

1
IST 1l IEND 81 JST 41 JEND 41 WALL U 0. v 0.0
IST 1 IEND 81 JST 1 JEND 1 SYMMETRY

IST 81 IEND 81 JST 1 JEND 41 OUTLET

TURBULENT TKIN 3.072 TEIN 10000.
PROPERTY VISCOS 9.05E-5

PSTAG 20240946.90 TSTAG 3637. GAMMA 1.2 GMW 10.18

SOLV U vV P_. TEMP TK TE
RUN DT 1.E-5 DTMIN 1.0E~5 DTMAX 1.E-2 CFLN 4.00 NSTEP 100

ENDJOB

NPR1 1 NPR2 100 NEX 18 ; LPFAC ; LPGEO
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Figure A.2 Sample SSME Nozzle Flow Inputs and Results --- Turbulent,

Non-reacting.
ISP = 513.06 sec.
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SAMPLE CASE 3

CONTROL COMPRES NCRT 2 OMGM 1 NCGM 50
OMGD 1.0 PHI -1.0 OMGPHI 0.00 OMGT 0.50 OMGF 1.00

ERRCG 1.0E-2 ERRM 1.0E-5 IMON 81 JMON 10 MONU
:RESTART
SRID NX 81 NY 41 AXISYM READXY
30UND

IST 1 IEND 1 JST 1 JEND 41 INLET
IST 1 IEND ‘81 JST 41 JEND 41 WALL U 0. v 0.0
IST 1 IEND 81 JST 1 JEND 1 SYMMETRY
IST 81 IEND 8l JST 1 JEND 41 OUTLET
TURBULENT TKIN 3.072 TEIN 10000.
REACTION
EQLM
PROPERTY VISCOS 9.05E-5
PSTAG 20240946.90 TSTAG 3637. GAMMA 1.2 GMW-10.18..
SOV U V P TEMP TK TE o
RUN DT 1.E-5 DTMIN 1.0E-5 DTMAX 1.E-2 CFLN 4.00 NSTEP 100 .-
NPR1 1 NPR2 100 NEX 18 ; LPFAC ; LPGEO
ZINDJOB

CONTOUR OF MACH NUMBER

1
!

A

Y{(M)
02 04 06 08
]

VR

0

0357

Figure A.3 Sample SSME Nozzle Flow Inputs and Results —-- Tu:hn:lent’,
Equilibrium reaction.

ISP = 459.86 sec. ORIGINAL PAGE I8
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SAMPLE INPUT FILE

“chem.in"

specis # -ns, elements # ne, frosen # nf
6 2 2

chemical element

OH

chemical species

02 H2 H20 HO O H ;

elements conservation bo

3.,8.

frosen ?

F

PR

ey eimle

Lt worare R

ORIGINAL PAGE IS
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Y(M)
02 04 06 08
. 1

SAMPLE CASE 4

CONTROL COMPRES NCRT 2 OMGM 1 NCGM 50

OMGD 1.0 PHI -1.0 OMGPHI 0.00

ERRCG 1.0E-2 ERRM 5.0E-6 IMON

; RESTART

GRID NX 81 NY 41 AXISYM READXY

BOUND
IST 1 IEND 1 JST 1 JEND
YH2 0.143 Y02 0.857 YHO 0. YH20
IsT 1 IEND 81 JST 41 JEND
IsT 1 IEND 81 JST 1 JEND
IST 81 IEND 81 JST 1 JEND
TURBULENT TKIN 3.072 TEIN 10000.
REACTION
FINIR LCHEM 1 INISPE

YH2 0.143 Y02 0.857 YHO 0. YH20 O.

PROPERTY VISCOS 9.05E-5

0

41
41

1
41

PSTAG 20240946.90 TSTAG 3637.

SOLV U vV P TEMP TK TE

RUN DT 1.E~5 DTMIN 1.0E-5 DTMAX 1.E-2

NPR1 1 NPR2 100 NEX 18

.
’

ENDJOB

OMGT 0.50 OMGF 1.00
81 JMON 10 MONU

INLET
WALL U 0.0 V 0.0

SYMMETRY
OUTLET

GAMMA 1.2 GMW 10.18

CFLN 4.00 NSTEP 100

LPFAC ; LPGEO

A

1
i

1

X(M)

Figure A.4 Sample SSME Nozzle Flow Inputs and Results --- Turbulent

2-Step Kinetics.
ISP = 442.01 sec.
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Y(M)

Y(M)

Figure A.5 Sample SSME Nozzle Flow Inputs and Results --- Turbulent,

SAMPLE CASE 5

Z2NTROL COMPRES NCRT 2 OMGM 1 NCGM 50

OMGD 1.0 PHI -1.0 OMGPHI 0.00

OMGT 0.50 OMGF 1.00
ERRCG 1.0E-2 ERRM 1.0E-5 IMON 81 JMON 10 MONU
; RESTART

SRID NX 81 NY 41 AXISYM READXY

30UND
IST 1 IEND 1 JST 1 JEND 41 INLET
YH2 0.143 Y02 0.857 YO 0. YH 0. YHO 0. YH20 O.
IsT 1 IEND 81 JST 41 JEND 41 WALL U 0.
IST 1 IEND 81 JST 1 JEND 1 SYMMETRY
IST 81 IEND 8l JST 1 JEND 41 OUTLET

TURBULENT TKIN 3.072 TEIN 10000.

REACTION -

FINIR LCHEM 2 INISPE

YH2 0.143 YO2 0.857 YO 0. YH 0. YHO 0.0 YH20 0.0
PROPERTY VISCOS 9.0S5E-5

PSTAG 20240946.90 TSTAG 3637. GAMMA 1.2 GMW 10.18
SOLV U Vv P TEMP TK TE
RUN DT 1.E-5 DTMIN 1.0E-5 DTMAX 1.E-2 CFLN 4.00 NSTEP 100

NPR1 1 NPR2 100 NEX 18 ; LPFAC ; LPGEO
ZINDJOB

vV 0.0 ;

v !
0843 1643
X(M)

OONTOUR OF MACH NUMEER
j —
=
co.-1
od
°"1
]
8_
o - 1 v |
-0357 1643 2643
X(M)
CONTOUR OF TEMPERATURE
©
8
o
°] o> :::::i:::::;:::::
3- e |
4
3 %\ \
(=X ! i !
2643

g8-Step Kinetics.
ISP = 452.78 sec.
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Table A.l1. Updated features in the MAST code. (Dec., 1992)



